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Abstract
A two-dimensional Leznov lattice equation with self-consistent sources
(LeznovESCS) is presented through the ‘source generation’ procedure, starting
from the Casoratian determinant solution of the two-dimensional Leznov lattice
equation. As a result, the Casoratian determinant solution of the LeznovESCS
is obtained. Besides, we also give the Grammian determinant solution of the
coupled system. In addition, the bilinear Bäcklund transformation (BT) for the
LeznovESCS is given.

PACS numbers: 02.30.Ik, 02.30.Ks, 02.30.Zz

1. Introduction

Soliton equations with self-consistent sources (SESCSs) exhibit various nonlinear dynamics,
and they are extensively treated within the framework of constrained flows of soliton equations
[1–5]. Some SESCSs have important physical applications as well, particularly to problems
in hydrodynamics, plasma physics, solid-state physics, among others [6–8]. SESCSs have
been studied and solved in several ways, such as the inverse scattering transform, Darboux
transformation and Hirota’s method (see [9–25]). Recently, Hu and Wang proposed a new
algebraic procedure called ‘source generation’[26] to construct and solve SESCSs, based on
the bilinear forms of the original equations without sources.(In [26], this new procedure was
called ‘source generalization procedure’ as first. While considering the fact that the procedure
enables one to introduce sources in integrable equations, it may be more precise to rename
the title of the procedure as ‘source generation’.) Through the procedure we have obtained
determinant or Pfaffian solutions of SESCSs which are closely related to solutions of the
original equations without sources. In this case, bilinear SESCSs are nothing but Pfaffian
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identities. The procedure has been successfully applied to the 2D Toda lattice equation, BKP-
type and discrete KP equations, and so on [26, 27]. There are three steps involved in the
source generation procedure:

1. to express N-soliton solutions of a soliton equation without sources in the form of
determinant or Pfaffian with some arbitrary constants, say ci,j ;

2. to introduce the corresponding determinant or Pfaffian with arbitrary functions of an
independent variable, e.g. ci,j (t);

3. to seek coupled bilinear equations whose solutions are the above generalized determinants
or Pfaffians. The coupled system is just the SESCS.

Obviously, the success of source generation procedure relies heavily on some arbitrary
constants appearing in determinantal solutions or Pfaffian solutions of soliton equations
without sources. Since Grammian determinant solutions or Grammian Pfaffian solutions
of soliton equations without sources always contain arbitrary constants explicitly, say ci,j ,
naturally we prefer to begin with Grammian determinant solutions or Grammian Pfaffian
solutions. In [26, 27], we have constructed and solved four SESCSs starting from the
Grammian determinant solution or Grammian Pfaffian solution of soliton equations without
sources. Until now, all examples of SESCSs found by the source generation procedure always
choose Grammian determinant or Grammian Pfaffian solutions as a starting point. However,
as we know, most AKP-type soliton equations (such as the KP equation or the 2D Toda lattice
equation) have not only Grammian determinant solutions, but also Wronskian or Casoratian
determinant solutions. Hence it is natural to ask if we can also apply the source generation
procedure to the Wronskian (or Casoratian) determinant solution of soliton equations. The
answer is affirmative. Although different from Grammian determinant solutions, some
arbitrary constants hidden in the forms of Wronskian or Casoratian determinant solutions
can be utilized. The purpose of this paper is to apply the source generation procedure to the
two-dimensional Leznov lattice equation, starting from the Casoratian determinant solution
of the Leznov lattice equation.

The two-dimensional Leznov lattice equation is given by [28]

∂2

∂x∂y
ln θ(n) = θ(n + 1)p(n + 1) − 2θ(n)p(n) + θ(n − 1)p(n − 1), (1)

∂p(n)

∂y
= θ(n + 1) − θ(n − 1). (2)

Introducing the auxiliary variable z and dependent variable transformation:

θ(n) = τ(n + 1)τ (n − 1)

τ (n)2
, p(n) = 1

2

DxDyτ(n) · τ(n)

τ(n + 1)τ (n − 1)
,

the Leznov equation can be transformed into the bilinear equations [30]:

(DyDz − 2 eDn + 2)τ (n) · τ(n) = 0, (3)

(DyDx − 2Dz eDn)τ (n) · τ(n) = 0, (4)

where D is the Hirota bilinear operator [29]

Dm
x Dn

t f (x, t) · g(x, t) = ∂m

∂ym

∂n

∂sn
f (x + y, t + s)g(x − y, t − s)|s=0,y=0,m, n = 0, 1, . . .

exp(δDn)fn · gn ≡ exp

[
δ

(
∂

∂n
− ∂

∂n′

)]
f (n)g(n′)|n=n′ = f (n + δ)g(n − δ).
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Equations (3), (4) have the following Casoratian determinant solution [30, 31]:

τn � τ(n) =

∣∣∣∣∣∣∣∣∣∣

ϕ1(n) ϕ1(n + 1) · · · ϕ1(n + N − 1)

ϕ2(n) ϕ2(n + 1) · · · ϕ2(n + N − 1)

...
...

. . .
...

ϕN(n) ϕN(n + 1) · · · ϕN(n + N − 1)

∣∣∣∣∣∣∣∣∣∣
, (5)

where each function ϕi(n) satisfies the relations

∂ϕi(n)

∂y
= ϕi(n + 1),

∂ϕi(n)

∂z
= −ϕi(n − 1),

∂ϕi(n)

∂x
= −ϕi(n − 2). (6)

A particular solution of (6) can be obtained by choosing the following ‘exponential type’
function:

ϕi(n) = αip
n
i e−p−2

i x+piy− 1
pi

z + βiq
n
i e−q−2

i x+qiy− 1
qi

z
, (7)

where pi, qi, αi and βi are arbitrary constants.

2. Construction of the Leznov lattice equation with self-consistent sources

In this section, we will apply the ‘source generation’ procedure to the bilinear Leznov lattice
equations (3) and (4), starting from the Casoratian determinant solution of the Leznov lattice
equation. Following the source generation procedure, we generalize τn in (5) into a new
function fn such that

fn � f (n) =

∣∣∣∣∣∣∣∣∣∣

ψ1(n) ψ1(n + 1) · · · ψ1(n + N − 1)

ψ2(n) ψ2(n + 1) · · · ψ2(n + N − 1)

...
...

. . .
...

ψN(n) ψN(n + 1) · · · ψN(n + N − 1)

∣∣∣∣∣∣∣∣∣∣
, (8)

with each function ψi(n) expressed as

ψi(n) = ϕi1(n) + (−1)i−1Ci(x)ϕi2(n), i = 1, 2, . . . , N, (9)

where each function ϕi1(n), ϕi2(n) satisfy the dispersion relation (6). Here Ci(x) is defined
by

Ci(x) =
{
βi(x), 1 � i � K � N,K,N ∈ Z+,

βi, otherwise,
(10)

where βi(x) is an arbitrary function of the variable x.
For the sake of convenience in calculations, we now express fn in (8) in Pfaffian form

[29]:

fn = pf(d0, d1, . . . , dN−1, N, . . . , 2, 1)n, (11)

where Pfaffian elements are defined by

pf(dm, i)n = ψi(n + m), pf(dm, dk)n = pf(i, j)n = 0, i, j = 1, 2, . . . , N.

Then we obtain the following differential formula from expressions (9) and (10):

fnx =
K∑

j=1

β̇j (x)pf(d0, . . . , dN−1, N, . . . , ĵ , . . . , 1, cj )n

+ pf(d−1, d0, d2, . . . , dN−1, N, . . . , 2, 1)n

− pf(d−2, d1, . . . , dN−1, N, . . . , 2, 1)n, (12)
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where the dot denotes the derivative of the function βj (x) with respect to x, and new Pfaffian
entries are defined by

pf(dm, ci)n = ϕi2(n + m), pf(ci, cj )n = pf(ci, j)n = 0, i, j = 1, 2, . . . , N.

In addition, we have some other differential and difference formulae

fnz = −pf(d−1, d1, . . . , dN−1, N, . . . , 2, 1),

fny = pf(d0, d1, . . . , dN−2, dN , N, . . . , 2, 1),

fn+1 = pf(d1, d2, . . . , dN , N, . . . , 2, 1).

(13)

From expressions (12) and (13), we find that fn’s no longer satisfy equations (3) and (4).
Hence we need to introduce new functions gj,n, hj,n, which are expressed in Pfaffian forms as

gj,n � gj (n) =
√

2β̇j (x)pf(d−1, d0, . . . , dN−1, N, . . . , 1, cj )n, (14)

hj,n � hj (n) =
√

2β̇j (x)pf(d1, d2, . . . , dN−1, N, . . . , ĵ , . . . , 1)n, (15)

where j = 1, 2, . . . , K . We can show that the fn, gj,n and hj,n so defined satisfy the bilinear
equations

(DyDz − 2 eDn + 2)fn · fn = 0, (16)

(DyDx − 2Dz eDn)fn · fn = −
K∑

j=1

eDngj,n · hj,n, (17)

(Dy + e−Dn)fn · gj,n = 0, j = 1, 2, . . . , K, (18)

(Dy + e−Dn)hj,n · fn = 0, j = 1, 2, . . . , K. (19)

In the following, we prove that fn, gj,n and hj,n are solutions of equations (16)–(19).
Firstly, from the expression of fn and section 1, we can easily find that equation (16) holds.
On the other hand, for simplicity of calculation, we set

g̃j,n = pf(d−1, d0, . . . , dN−1, N, . . . , 1, cj ),

h̃j,n = pf(d1, d2, . . . , dN−1, N, . . . , ĵ , . . . , 1).

Then we get the formulae

g̃j,n+1 = pf(d0, d1, . . . , dN , N, . . . , 1, cj ),

g̃j,ny = pf(d−1, . . . , dN−2, dN , N, . . . , 1, cj ),
(20)

h̃j,n−1 = pf(d0, d1, . . . , dN−2, N, . . . , ĵ , . . . , 1),

h̃j,ny = pf(d1, . . . , dN−2, dN ,N, . . . , ĵ , . . . , 1).
(21)

Substituting expressions (12), (13) and (20), (21) into equation (17), we get the sum of the
determinant identities

0 =
K∑

j=1

β̇j (x)[pf(d0, . . . , dN−1, 	)pf(d0, . . . , dN−2, dN , N, . . . , ĵ , . . . , 1, cj )

− pf(d0, . . . , dN−2, dN , 	)pf(d0, . . . , dN−1, N, . . . , ĵ , . . . , 1, cj )

+ pf(d0, . . . , dN , 	, cj )pf(d0, . . . , dN−2, N, . . . , ĵ , . . . , 1)],



On the two-dimensional Leznov lattice equation with self-consistent sources 12695

where 	 denotes {N, . . . , 2, 1}. The above result indicates that equation (17) holds. Similarly,
substitution of (13) and (20) into equation (18) yields the Maya diagram of determinants

pf(d−1, d0, . . . , dN−2, 	)pf(d0, . . . , dN , 	, cj )

+ pf(d0, . . . , dN−2, dN , 	)pf(d−1, . . . , dN−1, 	, cj )

− pf(d0, d1, . . . , dN−1, 	)pf(d−1, . . . , dN−2, dN , 	, cj ) = 0,

which indicates equation (18) holds. In an analogous way, we can prove fn and hj,n satisfy
equation (19). Therefore fn, gj,n and hj,n in (8) and (14), (15) are the Casoratian determinant
solution of equations (16)–(19), which are just the two-dimensional Leznov lattice equations
with self-consistent sources (LeznovESCS) in the bilinear form.

If we apply the dependent variable transformations

θ(n) = f (n + 1)f (n − 1)

f (n)2
, p(n) = 1

2

DxDyf (n) · f (n)

f (n + 1)f (n − 1)
,

vj (n) = gj (n)

f (n)
, wj (n) = hj (n)

f (n)

the bilinear LeznovESCS (16)–(19) is transformed into the nonlinear equations

∂2

∂x∂y
ln θ(n) = θ(n + 1)p(n + 1) − 2θ(n)p(n) + θ(n − 1)p(n − 1), (22)

∂p(n)

∂y
= θ(n + 1) − θ(n − 1) − 1

2

K∑
j=1

(vj (n + 1)wj (n − 1))y, (23)

∂vj (n)

∂y
= θ(n)vj (n + 1), j = 1, 2, · · · ,K, (24)

∂wj (n)

∂y
= −θ(n)wj (n − 1), j = 1, 2, · · · ,K. (25)

When gj,n and hj,n in (16)–(19) are selected to be zero, equations (16)–(19) are reduced to the
bilinear two-dimensional Leznov lattice equations (3) and (4). Accordingly, equations (22)–
(25) are reduced to the two-dimensional Leznov lattice equations (1), (2).

3. Grammian determinant solution of the LeznovESCS (16)–(19)

In section 2, we have constructed the LeznovESCS and obtained the Casoratian determinant
solution of the LeznovESCS through the source generation procedure. We know from [26, 29]
that we can also get the Grammian determinant solution of the LeznovESCS through the same
procedure. Following the procedure, we first give a kind of Grammian determinant solution
of equations (3) and (4)

τn � τ(n) = |cij + (−1)n
∫ y

ϕi(n)φj (−n) dy|1�i,j�N, (26)

where cij is a constant. Here each function ϕi(n) still satisfies relation (6) and each function
φi(−n) satisfies the following relations:
∂φi(−n)

∂y
= φi(−n + 1),

∂φi(−n)

∂z
= −φi(−n − 1),

∂φi(−n)

∂x
= φi(−n − 2).

(27)

It can be proved that the τn in (26) satisfies equations (3) and (4) through determinant identities.
Now we generalize this τn into the function
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F(n) = |cij (x) + (−1)n
∫ y

ϕi(n)φj (−n)dy|1�i,j�N

= pf1(1, 2, . . . , N,N∗, . . . , 2∗, 1∗)n � Fn, (28)

where Pfaffian elements are defined by

pf1(i, j
∗)n = cij (x) + (−1)n

∫ y

ϕi(n)φj (−n) dy,

pf1(i, j)n = pf1(i
∗, j ∗)n = 0, i, j = 1, 2, . . . , N,

and cij (x) satisfies

cij (x) ≡
{
βi(x), i = j and 1 � i � K � N,K,N ∈ Z+,

cij , i �= j and 1 � i, j � N.

Then we find that Fn does not satisfy equations (3) and (4) again. So we introduce other new
functions expressed in Pfaffian form:

Gj,n � Gj(n) =
√

2β̇j (x)pf1(d
∗
−1, 1, . . . , N,N∗, . . . , ĵ ∗, . . . , 1∗)n, (29)

Hj,n � Hj(n) =
√

2β̇j (x)pf1(d−1, 1, . . . , ĵ , . . . , N,N∗, . . . , 1∗)n, (30)

where j = 1, 2, . . . , K , and the new Pfaffian entries are defined by

pf1(d
∗
m, i)n = ϕi(n + m), pf1(dm, j ∗)n = (−1)n−mφi(−n + m),

pf1(dm, d∗
l )n = pf1(dm, dl)n = pf1(d

∗
m, d∗

l )n = pf1(dm, i)n = pf1(d
∗
m, j ∗)n = 0.

We can see that Fn,Gj,n and Hj,n so defined satisfy bilinear equations (16)–(19), i.e.,

(DyDz − 2 eDn + 2)Fn · Fn = 0, (31)

(DyDx − 2Dz eDn)Fn · Fn = −
K∑

j=1

eDnGj,n · Hj,n, (32)

(Dy + e−Dn)Fn · Gj,n = 0, j = 1, 2, . . . , K, (33)

(Dy + e−Dn)Hj,n · Fn = 0, j = 1, 2, . . . , K. (34)

In fact, it is obvious that Fn still satisfy equation (31). On the other hand, from expression
(28), we have the differential formulae

∂fn

∂x
=

K∑
j=1

β̇j (x)pf1(1, 2, . . . , ĵ , . . . , N,N∗, . . . , ĵ ∗, . . . , 1∗)n

+ pf1(d−1, d
∗
−2, •)n + pf1(d−2, d

∗
−1, •)n, (35)

∂2

∂x∂y
fn =

K∑
j=1

β̇j (x)pf1(d0, d
∗
0 , 1, 2, . . . , ĵ , . . . , N,N∗, . . . , ĵ ∗, . . . , 1∗)n

+ pf1(d0, d
∗
−2, •)n + 2pf1(d−1, d

∗
−1, •)n + pf1(d−2, d

∗
0 , •)n

+ pf1(d−2, d
∗
−1, d0, d

∗
0 , •)n + pf1(d−1, d

∗
−2, d0, d

∗
0 , •)n. (36)

Substituting (29), (30) and (35), (36) into equation (32) yields the sum of Jacobi determinant
identities
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K∑
j=1

β̇j (x)[pf1(d0, d
∗
0 , 1, 2, . . . , ĵ , . . . , N,N∗, . . . , ĵ ∗, . . . , 1∗)npf1(•)n

− pf1(1, 2, . . . , ĵ , . . . , N,N∗, . . . , ĵ ∗, . . . , 1∗)npf1(d0, d
∗
0 , •)n

+ pf1(d
∗
0 , 1, . . . , N,N∗, . . . , ĵ ∗, . . . , 1∗)n

× pf1(d0, 1, . . . , ĵ , . . . , N,N∗, . . . , 1∗)n] = 0.

Similarly, we can prove that equation (33) can be transformed into another Jacobi determinant
identity

pf1(d0, d
∗
0 , •)npf1(d

∗
−1, 1, . . . , N,N∗, . . . , ĵ ∗, . . . , 1∗)n

− pf1(•)npf1(d
∗
−1, d0, d

∗
0 , 1, . . . , N,N∗, . . . , ĵ ∗, . . . , 1∗)n

− pf1(d0, d
∗
−1, •)npf1(d

∗
0 , 1, . . . , N,N∗, . . . , ĵ ∗, . . . , 1∗)n = 0,

where • denotes {1, 2, . . . , N,N∗, . . . , 1∗}. The above results indicate that equations (32) and
(33) hold. Much in the same way, equation (34) holds. Hence Fn,Gj,n and Hj,n in (28)–(30)
are the Grammian determinant solutions of the bilinear LeznovESCS (16)–(19).

4. Bilinear Bäcklund transformation of equations (16)–(19)

In this section, we present a bilinear Bäcklund transformation for the LeznovESCS (16)–(19).
The results obtained are:

Proposition 1. The bilinear system (16)–(19) has the bilinear Bäcklund transformation:

(Dy + λ e−Dn + θ)fn · f ′
n = 0, (37)

(Dy + λ e−Dn + θ)gj,n · g′
j,n = 0, j = 1, 2, . . . , K, (38)

(Dy + λ e−Dn + θ)hj,n · h′
j,n = 0, j = 1, 2, . . . , K, (39)

e
1
2 Dnfn · h′

j,n = λ e− 1
2 Dnfn · h′

j,n + µj e− 1
2 Dnhj,n · f ′

n, j = 1, 2, . . . , K, (40)

e
1
2 Dngj,n · f ′

n = λ e− 1
2 Dngj,n · f ′

n + µj e− 1
2 Dnfn · g′

j,n, j = 1, 2, . . . , K, (41)

(Dz e− 1
2 Dn − λ−1 e

1
2 Dn + γ e− 1

2 Dn)fn · f ′
n = 0, (42)

(λDx e− 1
2 Dn − Dz e

1
2 Dn − γ e

1
2 Dn + ν e− 1

2 Dn)fn · f ′
n =

K∑
j=1

λ

2µj

e
1
2 Dngj,n · h′

j,n, (43)

where λ, θ, γ, ν, and µj are arbitrary constants.

Proof. Let (fn, gj,n, hj,n) be a solution of equations (16)–(19) and (f ′
n, g

′
j,n, h

′
j,n) satisfies

relations (37)–(43). What we need to prove is that (f ′
n, g

′
j,n, h

′
j,n) is also a solution of

equations (16)–(19). According to [25], we know that f ′
n, g

′
j,n and h′

j,n satisfy equations (16)
and (18), (19). Hence we only need to prove that equation (17) holds. In fact, using the
bilinear operator identities (A.1)–(A.6) and relations (37)–(43), we derive

P ≡

(DyDx − 2Dz eDn)fn · fn +

K∑
j=1

eDngj,n · hj,n


 (f ′

n)
2 − f 2

n


(DyDx − 2Dz eDn)f ′

n · f ′
n

+
K∑

j=1

eDng′
j,n · h′

j,n


 = 2Dx(Dyfn · f ′

n) · fnf
′
n − 4 sinh

Dn

2

[(
Dz e

1
2 Dnfn · f ′

n

)
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· (
e− 1

2 Dnfn · f ′
n

) − (
e

1
2 Dnfn · f ′

n

) · (
Dz e− 1

2 Dnfn · f ′
n

)]
+

K∑
j=1

[
e

1
2 Dn

(
e

1
2 Dngj,n · f ′

n

)

· (
e− 1

2 Dnhj,n · f ′
n

) − e− 1
2 Dn

(
e

1
2 Dnfn · h′

j,n

) · (
e− 1

2 Dnfn · g′
j,n

)]
= −2λDx(e

−Dnfn · f ′
n) · fnf

′
n − 4 sinh

Dn

2

(
Dz e

1
2 Dnfn · f ′

n

) · (
e− 1

2 Dnfn · f ′
n

)

− 4γ sinh
Dn

2

(
e

1
2 Dnfn · f ′

n

) · (
e− 1

2 Dnfn · f ′
n

) −
K∑

j=1

λ

µj

[
e

1
2 Dn

(
e

1
2 Dngj,n · f ′

n

)

· (
e− 1

2 Dnfn · h′
j,n

) − e
1
2 Dn

(
e− 1

2 Dngj,n · f ′
n

) · (
e

1
2 Dnfn · h′

j,n

)]
= −4ν sinh

Dn

2

(
e− 1

2 Dnfn · f ′
n

) · (
e− 1

2 Dnfn · f ′
n

) ≡ 0. (44)

The above result indicates that f ′
n, g

′
j,n and h′

j,n satisfy equation (17). Therefore we have
completed the proof. �

5. Conclusion and discussions

In this paper, we constructed and solved the two-dimensional LeznovESCS through the source
generation procedure, starting from the Casoratian determinant and Grammian determinant
solutions of the Leznov lattice equation, respectively. As a result, we have obtained the
Casoratian determinant solution and the Grammian determinant solution of the LeznovESCS,
similar to the fact that the Leznov lattice equation has two kinds of determinant solutions.
When the LeznovESCS possesses K(K � 1) pairs of sources, we can obtain N-order (N � K)

Casoratian determinant and N-order Grammian determinant solutions of the system. If we
set each βj (x) be a constant, the sources gj,n, hj,n,Gj,n and Hj,n all become zero. Then the
LeznovESCS is reduced to the Leznov lattice equation. Accordingly, fn and Fn are reduced
to the Casoratian determinant and Grammian determinant solutions of the Leznov lattice
equation, respectively. In this case, solutions of the LeznovESCS are a kind of generalization
of solutions to the Leznov lattice equation. It is noted that the Leznov lattice equation can be
generalized into more extended forms. For example, we can define the function ψi(n) in (9)
in the following new form:

ψi(n) =
K∑

k=1

Cik(x)ϕik(n),

where each ϕik(n) satisfies relation (6), and each Cik(x) is some arbitrary function. Similarly,
for the Grammian determinant Fn in (28), we can also select the arbitrary function cij (x) in
the following form:

cij (x) = c′
ij +

K∑
k=1

∫ x

βik(x)γjk(x) dx, c′
ij = constant, 1 � i, j � N

where βik(x) and γjk(x) are arbitrary functions.
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Appendix. Hirota’s bilinear operator identities

The following bilinear operator identities hold for arbitrary functions an, bn, cn, a
′
n, b

′
n and c′

n.

(DyDxan · an)b
2
n − a2

n(DyDxbn · bn) = 2Dx(Dyan · bn) · anbn, (A.1)

(Dz eDnan · an)b
2
n − a2

n(Dz eDnbn · bn) = 2 sinh

(
Dn

2

)[(
Dz e

Dn
2 an · bn

) · (
e− Dn

2 an · bn

)

− (
e

Dn
2 an · bn

) · (
Dz e− Dn

2 an · bn

)]
, (A.2)

Dx(e
−Dnan · bn) · anbn = −2 sinh

(
Dn

2

)(
Dx e− Dn

2 an · bn

) · (
e− Dn

2 an · bn

)
, (A.3)

(eDnbn · cn)(a
′
n)

2 − a2
n(e

Dnb′
n · c′

n) = e
Dn
2
(
e

Dn
2 bn · a′

n

) · (
e− Dn

2 cn · a′
n

)
− e− Dn

2
(
e

Dn
2 an · c′

n

) · (
e− Dn

2 an · b′
n

)
, (A.4)

(Dz eDnbn · cn)(a
′
n)

2 − a2
n(Dz eDnb′

n · c′
n) = Dz e

Dn
2
(
e

Dn
2 bn · a′

n

) · (
e− Dn

2 cn · a′
n

)
+ Dz e− Dn

2
(
e

Dn
2 an · c′

n

) · (
e− Dn

2 an · b′
n

)
, (A.5)

2 sinh

(
Dn

2

)(
e

Dn
2 bn · b′

n

) · (
e− Dn

2 an · a′
n

) = e
Dn
2
(
e

Dn
2 bn · a′

n

) · (
e− Dn

2 an · b′
n

)

− e− Dn
2
(
e

Dn
2 an · b′

n

) · (
e− Dn

2 bn · a′
n

)
. (A.6)
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